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Abstract
Many studies of the ferromagnetic metal Fe have been reported and discussed,
such as spin-polarized band calculations, photoemissions, dHvA (de Haas–van
Alphen) experiments and Compton profiles experiments. However, theoretical
magnetic Compton profiles (MCPs) of bcc Fe are not in good agreement with
experimental results, especially in the low momentum region. It is said that this
discrepancy is caused in the local spin density approximation (LSDA). Kubo
et al calculated the MCPs of bcc Fe with full-potential linearized augmented
plane wave (FLAPW) method and lowering the centre of gravity of the p-
states. Their results are in good agreement with the experimental one. Recently,
we suggested a new LSDA + U method which is effective for metals. For
nonmagnetic state bcc V and bcc Cr, the shape of the Fermi surfaces and the
population of the dε orbital are improved. In this paper, we show that our
LSDA+U method improves the size of the N-centred hole pocket and MCPs for
ferromagnetic Fe. We used a modified WIEN97 package by adding two kinds
of LSDA + U versions, LSDA + U DFT and LSDA+ U 1.0. In the self-consistent
field (SCF) calculation, the fixed-spin-moment scheme is applied.

1. Introduction

Many theoretical and experimental researches on ferromagnetic bcc Fe have been carried
out. The topology of the Fermi surfaces has been determined by spin-polarized band
calculations [1–4], photoemission [5, 6], dHvA (de Haas–van Alphen) experiments [7, 8] and
Compton profile experiments, etc. It is well known that the calculated electronic states from
band theory are in good agreement with the experimental results for 3d transition metals.

For bcc Fe, the size of the N-hole for minority spin is interesting. Though it is
experimentally shown that a small hole pocket exists around the N-point, some theoretical
calculations contradict the existence of this hole surface. There is also an uncertainty in the
size of the N-hole pocket in experiments. Other remarkable points are the disagreements in the
magnetic Compton profiles (MCPs) between the theoretical results and the experimental ones.
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The Compton scattering technique is one of the effective methods for Fermi surface study.
As the synchrotron radiation improves the intensity and flux, high accuracy experimental results
of Compton profiles have been reported [9–15].

Collins et al [12] proposed MCPs of bcc Fe and compared them with the APW and
LMTO band calculations. However, these results are not in good agreement with the band
calculations in the low momentum region. It seems that this disagreement is due to the size
of the Fermi surfaces. In fact, Kubo et al [4] calculated the MCPs by the parameterized full-
potential linearized augmented plane wave (FLAPW) method with LSDA (local spin density
approximation). To improve the size of the N-centred hole pocket for the spin-down state,
they calculated the band structures by lowering the centre of gravity of the p-states. They
revealed that the parameterized FLAPW method decreased the amount of disagreement of the
MCPs from the experimental values in the low momentum region. There are many improved
theoretical methods which include parameterized and tuned calculations. Major et al [16]
calculated ‘tuning’ ab initio band structure calculations for MCPs of Ni. They also shifted
some bands rigidly to change the Fermi surface topologies. Dixon et al [17] studied MCPs for
Ni with LSDA and GGA methods. In this paper, we introduce the LSDA + U method, which
shifts some bands naturally.

The LSDA is used very widely and it is an effective method for 3d transition metals. But
the LSDA does not sufficiently take into account the electron correlation. Recently, in order
to treat the electron correlation more precisely, LSDA + U , GW approximation and GGA
(generalized gradient approximation) methods, amongst others, have been proposed. Anisimov
et al [18] suggested LSDA + U for the oxides to take into account the spin and the orbital
polarization effects. Although the LSDA could not predict the real band gap of the oxides,
LSDA + U could reproduce the real band gap. We introduced a new version of the LSDA + U
method, which obtained a suitable effective potential for nonmagnetic bcc V and bcc Cr [19].
We decided to confirm that this method is effective for magnetic bcc Fe by calculating the
MCPs and Fermi surfaces.

Section 2 gives an outline of the LSDA + U method. In section 3, calculated energy bands
and Fermi surfaces are given. Section 4 gives the calculated MCPs and compares them with
the experimental results. In section 5, we give our conclusions.

2. Method of LSDA + U

Equation (1) is suggested by Anisimov et al [18], LSDA + U DFT.

V DFT
σm = U(〈nσ 〉 − nσm), (1)

where 〈nσ 〉 is the number of electrons averaged over the five 3d states with spin σ , nσm is the
number of the electrons for the mth 3d state, where m = 1 is the dε state which depends on
the orbitals dxy , dyz and dzx , and m = 2 is the dγ state which depends on the dx2−y2 and d3z2−1

states.
Equation (2) is our version, LSDA + U 1.0.

V 1.0
σm = U(1.0 − nσm). (2)

Using equation (2) for nonmagnetic state bcc V and bcc Cr, the population of the dε orbital
can be seen to explain the experimental facts. Although equation (1) is useful and effective for
oxides, we used this equation for metals by changing U and concluded that this equation was
not appropriate for metal calculations.

For the ferromagnetic metals, LSDA + U shows a tendency that the difference between
electron numbers of the spin-up and the spin-down states becomes larger than the experimental
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Figure 1. Calculated majority (spin-up) energy bands of Fe. LSDA + U is denoted by solid lines,
LSDA by dotted lines. (a) is V 1.0, (b) is V DFT. Calculated using U = 0.15 Ryd for (a) and (b). The
Fermi energy (EF) shifted 0 Ryd.

value. We adopted a fixed-spin-moment calculation scheme to be consistent with the
experimental value of the magnetic moment.

To decide on a suitable value for the parameter U , we must calculate with several
parameters U . Because the effective parameter U is 0.15 Ryd for bcc V and bcc Cr, we adopt
a starting parameter U of 0.15 Ryd, and we finally reached the result that the best U value is
0.15 Ryd for bcc Fe.

3. Energy band structures and Fermi surfaces

Our band calculation was carried out by the FLAPW method. We modified WIEN97 [20] by
adding two kinds of LSDA + U versions, LSDA + U DFT and LSDA + U 1.0. The theoretical
lattice constant is 5.4 au. In the self-consistent iteration in the procedure, we calculated at
about 2000 k-points in the Brillouin zone (BZ). Using a cubic mesh whose edge length is 1/32
of distance between � and M, we calculated the Fermi surfaces. The MCPs are calculated
by the linear tetrahedron method [21, 22] using 1505 reciprocal lattice points. Parameter U
depends only on the 3d orbitals (m = 2).

Figures 1 and 2 show the energy band structures of bcc Fe, in the spin-up state and spin-
down state, respectively. Figures 1(a) and 2(b) are calculated by our LSDA + U . Figures 1(b)
and 2(b) are calculated by Anisimov’s LSDA+U . In the spin-up state, the differences between
LSDA and LSDA + U are comparatively small. In particular, at the � point of figure 1(a), the
�12 state which is nearly at EF shifts to lower energy. The �25′ state shifts to a value higher than
the results of the LSDA. The energy difference between our LSDA + U and LSDA is about
0.02 Ryd.

In figure 2, the �1 state is s-state, and the �25′ and �12 states are mainly dxy and d3z2−1

states, respectively. Using parameter U , �25′ shifts to the lower energy region, and �12 shifts to
the higher energy region.

A remarkable difference between LSDA+U(V DFT) and our LSDA+U(V 1.0
σm ) appears near

the N-point region. In figure 2(a), the energy band calculated by V 1.0
σm near the N-point shifts

about 0.006 Ryd from LSDA (U = 0.0 Ryd). In figure 2(b), V DFT
σm shifts about 0.003 Ryd.

V 1.0
σm influences the energy band at the N-point which shifts to the lower energy region, and the

N-hole Fermi surfaces disappear. In figure 3, the Fermi surfaces are calculated by the LSDA
method, and our LSDA+U (V 1.0

σm ). Figures 3(a) and (b) are the spin-up state and the spin-down
state, respectively. In figure 3(b), the characteristic Fermi surface is N-centred hole which is
constructed by third band. The LSDA is not in agreement with the experimental results. By
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Figure 2. Calculated minority (spin-down) energy bands of Fe. LSDA+U is denoted by solid lines,
LSDA by dotted lines. (a) is V 1.0, (b) is V DFT. Calculated using U = 0.15 Ryd for (a) and (b). The
Fermi energy (EF) shifted 0 Ryd.

(a) (b)

Figure 3. Intersections of the Fermi surfaces of Fe. (a) is the spin-up state, (b) is the spin-down
state. V 1.0 is denoted by solid lines, LSDA by dotted lines. The numbers denote the number of
occupied states.

applying the V 1.0
σm , the N-hole Fermi surfaces disappear. The third energy band along P–N and

N–� contains mainly p-states. Though the effect of U is given only to d-states, because the
centre of gravity of the d-bands is shifted, the p-band also shifts by V 1.0

σm .

4. Magnetic Compton profiles and discussion

The magnetic Compton profile Jmag(pz) is defined by

Jmag(pz) = Jup(pz) − Jdown(pz), (3)
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Figure 4. Magnetic Compton profiles of iron for [111], [110] and [100] directions. LSDA + U
(V1.0) is denoted by a solid line, LSDA by a dotted line. The boxes are experimental data from
Collins [12]. Theoretical results are convoluted with the experimental resolution, which is FWHM
0.70 au, and normalized to an area of the experiment’s magnetic moment in the momentum range
−8 to 8 au.

where Jup/down(pz) is the Compton profile of spin-up and spin-down states, respectively.
Jup/down is defined as follows:

Jup/down(pz) =
∫ ∫

ρup/down(p) dpx dpy, (4)

where ρ(p) is a momentum density. Jmag(pz) should satisfy the following condition:∫
Jmag(pz) dpz = nmag = magnetic moment. (5)

Figure 4 shows the MCPs for three directions: [111], [110] and [110]. The theoretical
results are convoluted with FWHM 0.7 au, which is the experimental resolution. The
normalizations are carried out with the following condition:∫ 8

−8
Jmag dpz = nmag. (6)

Collins et al [12] proposed MCPs of bcc Fe and compared them with the APW and
LMTO band calculations. In the MCPs of the low momentum region, there is a discrepancy
in the calculated results. LMTO improved on these discrepancies better than APW. But both
theoretical methods gave larger values than the experimental one.

In figure 4, we show that MCPs are improved, especially in the low momentum region. We
must reveal that which bands are influenced by our LSDA + U(V 1.0

σm ). Therefore, we compared
the partial MCPs from the third band to the sixth band calculated by the LSDA method and our
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(a) (b)

Figure 5. The partial magnetic Compton profiles of iron for the [100] direction. LSDA + U(V1.0)

is (a), LSDA is (b). The partial magnetic Compton profiles from the third band to the sixth band are
denoted by the solid line, dotted line, dashed line and dot–dashed line, respectively. The magnetic
Compton profiles are not normalized.

(a) (b)

Figure 6. The partial magnetic Compton profiles of iron for the [110] direction. LSDA + U(V1.0)

is (a), LSDA is (b). The partial magnetic Compton profiles from the third band to the sixth band are
denoted by the solid line, dotted line, dashed line and dot–dashed line, respectively. The magnetic
Compton profiles not normalized.

LSDA + U(V 1.0
σm ). Figures 5 and 6 are the partial MCPs, for the [100] and [110] directions. In

the [110] direction, the contributions from the third band are negative at around 0.5 au and they
are mainly p-like electrons. Comparing the results of the LSDA + U(V 1.0

σm ) and LSDA, we can
observe remarkable differences in the region 0–0.5 au. In this low momentum region, the MCPs
calculated by the LSDA method are overestimated. Because of these negative polarizations in
the low momentum region, the MCPs become characteristic structures.
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Figure 7. The partial magnetic Compton profiles of iron for the [111] direction. The partial
magnetic Compton profiles by LSDA + U from the first band to the third band are denoted by
the dashed line, dot-dashed line and two-dot-dashed line, respectively. The total magnetic Compton
profiles are denoted by the solid line and dotted line for LSDA + U and LSDA, respectively. The
magnetic Compton profiles not normalized.

Figures 5–7 are the partial MCPs of iron for the [100], [110] and [111] directions,
respectively. LSDA + U is in agreement with experimental results at around 0.5 au. As shown
in figure 4, for the MCPs of the [100] and [110] directions, the agreement between theory and
experiments is fairly good. For the [111] direction, however, the MCPs are underestimated near
the origin. McCarthy et al [15] compared the experimental results from high-energy magnetic
Compton scattering and calculated ones using the parameterized FLAPW method [4]. We
also compared with these experiment results. Our LSDA + U calculations are underestimated
in the low momentum region compared with the experiment. This tendency is similar to the
parameterized FLAPW results.

We must confirm why this disagreement occurs. As is seen from figure 7, which is the
partial MCPs for the [111] direction, at around 0.5 au, there is a remarkable difference between
LSDA and LSDA + U . The first band has negative contributions and mainly s-like electrons;
these partial MCPs may be the cause of the underestimated MCPs.

5. Conclusion

For bcc V and bcc Cr, the difference in the theoretical Compton profiles between our LDA +U
and the LDA calculations is very small. Because the topological change of the Fermi surfaces
for Cr and V is very small by introducing LDA + U , we cannot find any change of theoretical
Compton profiles by using LDA+U . As shown in section 3, LSDA+U(V 1.0

σm ) gives reasonable
results for the MCPs and the Fermi surfaces. Our method does not depend on the average
number of d-states. As a result, in our suggested method, the centre of gravity of the d-bands
shifts a little, and +U also influences the p-states. By reducing the size of the N-hole pocket,
the Fermi surfaces are found to be in agreement with the experimental results. We should
calculate the MCPs for hcp Co and fcc Ni, etc, to prove that our LSDA + U method is useful
for ferromagnetic metals.
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